So if there was an error in the old code this error might still occur and the traceback then points to the line you have just corrected. File "", line 1, in MIOpen runtime version: N/A You may re-send via your. Sorry, you must verify to complete this action. Staging Ground Beta 1 Recap, and Reviewers needed for Beta 2, Calling a function of a module by using its name (a string). You have to call the decorator as given in the docs and examples: Powered by Discourse, best viewed with JavaScript enabled, Older version of PyTorch: with torch.autocast('cuda'): AttributeError: module 'torch' has no attribute 'autocast'. How do I check if an object has an attribute? Connect and share knowledge within a single location that is structured and easy to search. GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 AttributeError:partially initialized module 'torch' has no attribute 'cuda', How Intuit democratizes AI development across teams through reusability. Sign in However, the error is not fatal. stderr: Traceback (most recent call last): --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) in 1 get_ipython().system('pip3 install torch==1.2.0+cu92 torchvision==0.4.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html') ----> 2 torch.is_cuda AttributeError: module 'torch' has no attribute 'is_cuda'. The latter error is associated with the pytorch dataloader, but all suggested solutions say to update to pytorch >= 1.7, which I have. You signed in with another tab or window. rev2023.3.3.43278. This is more of a comment then an answer. Please see. I got this error when working with Pytorch 1.12, but the error eliminated with Pytorch 1.10. torch.cuda.amp is available in the nightly binaries, so you would have to update. . It's better to ask on https://github.com/samet-akcay/ganomaly. PyTorch version: 1.12.1+cu116 Im running from torch.cuda.amp import GradScaler, autocast and got the error as in title. In such a case restarting the kernel helps. AC Op-amp integrator with DC Gain Control in LTspice. For more complete information about compiler optimizations, see our Optimization Notice. Error code: 1 Hi, Sorry for the late response. We tried running your code.The issue seems to be with the quantized.Conv3d, instead you can use normal convolution Well occasionally send you account related emails. If you don't want to update or if you are not able to do so for some reason. What else should I do to get right running? You may try updating. . What should have happened? I will spend some more time digging into this but. Steps to reproduce the problem. I have same error after install pytorch from channel "soumith" with this command: After reinstalling from pytorch channel all works fine. What is the difference between paper presentation and poster presentation? On a machine with PyTorch version: 1.12.1+cu116, running the following code gets error message module 'torch.cuda' has no attribute '_UntypedStorage'. You signed in with another tab or window. """, def __init__(self, num_classes, pretrained=False): super(C3D, self).__init__() self.conv1 = nn.quantized.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..54.14ms self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)), self.conv2 = nn.quantized.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1))#**395.749ms** self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)), self.conv3a = nn.quantized.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..208.237ms self.conv3b = nn.quantized.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))#***..348.491ms*** self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)), self.conv4a = nn.quantized.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..64.714ms self.conv4b = nn.quantized.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..169.855ms self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)), self.conv5a = nn.quantized.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#.27.173ms self.conv5b = nn.quantized.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#.25.972ms self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1)), self.fc6 = nn.Linear(8192, 4096)#21.852ms self.fc7 = nn.Linear(4096, 4096)#.10.288ms self.fc8 = nn.Linear(4096, num_classes)#0.023ms, self.relu = nn.ReLU() self.softmax = nn.Softmax(dim=1), x = self.relu(self.conv1(x)) x = least_squares(self.pool1(x)), x = self.relu(self.conv2(x)) x = least_squares(self.pool2(x)), x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = least_squares(self.pool3(x)), x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) x = least_squares(self.pool4(x)), x = self.relu(self.conv5a(x)) x = self.relu(self.conv5b(x)) x = least_squares(self.pool5(x)), x = x.view(-1, 8192) x = self.relu(self.fc6(x)) x = self.dropout(x) x = self.relu(self.fc7(x)) x = self.dropout(x), def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): init.xavier_normal_(m.weight.data) init.constant_(m.bias.data, 0.01) elif isinstance(m, nn.Linear): init.xavier_normal_(m.weight.data) init.constant_(m.bias.data, 0.01), import torch.nn.utils.prune as prunedevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = C3D(num_classes=2).to(device=device)prune.random_unstructured(module, name="weight", amount=0.3), parameters_to_prune = ( (model.conv2, 'weight'), (model.conv3a, 'weight'), (model.conv3b, 'weight'), (model.conv4a, 'weight'), (model.conv4b, 'weight'), (model.conv5a, 'weight'), (model.conv5b, 'weight'), (model.fc6, 'weight'), (model.fc7, 'weight'), (model.fc8, 'weight'),), prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.2), --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) in 19 parameters_to_prune, 20 pruning_method=prune.L1Unstructured, ---> 21 amount=0.2 22 ) ~/.local/lib/python3.7/site-packages/torch/nn/utils/prune.py in global_unstructured(parameters, pruning_method, **kwargs) 1017 1018 # flatten parameter values to consider them all at once in global pruning -> 1019 t = torch.nn.utils.parameters_to_vector([getattr(*p) for p in parameters]) 1020 # similarly, flatten the masks (if they exist), or use a flattened vector 1021 # of 1s of the same dimensions as t ~/.local/lib/python3.7/site-packages/torch/nn/utils/convert_parameters.py in parameters_to_vector(parameters) 18 for param in parameters: 19 # Ensure the parameters are located in the same device ---> 20 param_device = _check_param_device(param, param_device) 21 22 vec.append(param.view(-1)) ~/.local/lib/python3.7/site-packages/torch/nn/utils/convert_parameters.py in _check_param_device(param, old_param_device) 71 # Meet the first parameter 72 if old_param_device is None: ---> 73 old_param_device = param.get_device() if param.is_cuda else -1 74 else: 75 warn = False AttributeError: 'function' object has no attribute 'is_cuda', prune.global_unstructured when I use prune.global_unstructure I get that error. The nature of simulating nature: A Q&A with IBM Quantum researcher Dr. Jamie We've added a "Necessary cookies only" option to the cookie consent popup. Please edit your question with the full stack trace (and remove your comments). Recovering from a blunder I made while emailing a professor, Linear regulator thermal information missing in datasheet, How to handle a hobby that makes income in US, Minimising the environmental effects of my dyson brain. By clicking Post Your Answer, you agree to our terms of service, privacy policy and cookie policy. Try removing it then reinstalling. Thanks a lot! Be sure to install PyTorch with CUDA support. I tried to reinstall the pytorch and update to the newest version (1.4.0), still exists error. In torch.distributed, how to average gradients on different GPUs correctly? GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 """, def __init__(self, num_classes, pretrained=False): super(C3D, self).__init__() self.conv1 = nn.quantized.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..54.14ms self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)), self.conv2 = nn.quantized.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1))#**395.749ms** self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)), self.conv3a = nn.quantized.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..208.237ms self.conv3b = nn.quantized.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))#***..348.491ms*** self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)), self.conv4a = nn.quantized.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..64.714ms self.conv4b = nn.quantized.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#..169.855ms self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)), self.conv5a = nn.quantized.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#.27.173ms self.conv5b = nn.quantized.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))#.25.972ms self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1)), self.fc6 = nn.Linear(8192, 4096)#21.852ms self.fc7 = nn.Linear(4096, 4096)#.10.288ms self.fc8 = nn.Linear(4096, num_classes)#0.023ms, self.relu = nn.ReLU() self.softmax = nn.Softmax(dim=1), x = self.relu(self.conv1(x)) x = least_squares(self.pool1(x)), x = self.relu(self.conv2(x)) x = least_squares(self.pool2(x)), x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = least_squares(self.pool3(x)), x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) x = least_squares(self.pool4(x)), x = self.relu(self.conv5a(x)) x = self.relu(self.conv5b(x)) x = least_squares(self.pool5(x)), x = x.view(-1, 8192) x = self.relu(self.fc6(x)) x = self.dropout(x) x = self.relu(self.fc7(x)) x = self.dropout(x), def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): init.xavier_normal_(m.weight.data) init.constant_(m.bias.data, 0.01) elif isinstance(m, nn.Linear): init.xavier_normal_(m.weight.data) init.constant_(m.bias.data, 0.01), import torch.nn.utils.prune as prunedevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = C3D(num_classes=2).to(device=device)prune.random_unstructured(module, name="weight", amount=0.3), parameters_to_prune = ( (model.conv2, 'weight'), (model.conv3a, 'weight'), (model.conv3b, 'weight'), (model.conv4a, 'weight'), (model.conv4b, 'weight'), (model.conv5a, 'weight'), (model.conv5b, 'weight'), (model.fc6, 'weight'), (model.fc7, 'weight'), (model.fc8, 'weight'),), prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.2), --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) in 19 parameters_to_prune, 20 pruning_method=prune.L1Unstructured, ---> 21 amount=0.2 22 ) ~/.local/lib/python3.7/site-packages/torch/nn/utils/prune.py in global_unstructured(parameters, pruning_method, **kwargs) 1017 1018 # flatten parameter values to consider them all at once in global pruning -> 1019 t = torch.nn.utils.parameters_to_vector([getattr(*p) for p in parameters]) 1020 # similarly, flatten the masks (if they exist), or use a flattened vector 1021 # of 1s of the same dimensions as t ~/.local/lib/python3.7/site-packages/torch/nn/utils/convert_parameters.py in parameters_to_vector(parameters) 18 for param in parameters: 19 # Ensure the parameters are located in the same device ---> 20 param_device = _check_param_device(param, param_device) 21 22 vec.append(param.view(-1)) ~/.local/lib/python3.7/site-packages/torch/nn/utils/convert_parameters.py in _check_param_device(param, old_param_device) 71 # Meet the first parameter 72 if old_param_device is None: ---> 73 old_param_device = param.get_device() if param.is_cuda else -1 74 else: 75 warn = False AttributeError: 'function' object has no attribute 'is_cuda', prune.global_unstructured when I use prune.global_unstructure I get that error.
Lra St Louis, James Earl Crittenden Lynch, Brighton Centre Seating Plan, Hornady 22 Mag Ammo, Gary Numan Wife Gemma O'neill Age, Articles M